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The classical stability theorem for the conventional thermal equilibrium state of an electron gas in a uni­
form magnetic field is generalized to (a) the semiclassical case, (b) the quantum case when there is no magnetic 
field, and (c) the quantum case in the presence of a magnetic field, provided that only Coulomb interactions are 
retained. However, when the quantum gas in a magnetic field is treated with all electromagnetic interactions, 
at very low temperatures it becomes unstable against transverse excitations propagating in the direction of 
the field. This instability appears as a root of the quantum helicon dispersion relation in the upper half fre­
quency plane. I t is shown that the instability is due to the failure of the conventional Hartree ground state 
(in which the one-electron states are the ordinary Landau ones) to minimize the ground-state energy, when 
magnetic current-current interactions are retained along with Coulomb interactions. We have found a state 
giving a lower energy than the conventional one, in which transverse volume currents exist perpendicular to 
the magnetic field. Because, however, the magnetic coupling is very weak, the reduction in energy is un-
observably small at any realistic field strengths or electronic densities. We conclude that the instability does 
not lead to any measurable effects, and that for all practical purposes the conventional thermal equilibrium 
state can be regarded as stable. 

I. INTRODUCTION 

WE would like to call attention to and explain the 
significance of an instability in the quantum 

mechanical helicon dispersion relation. We shall show 
in a self-consistent field approximation1 that, at suffi­
ciently low temperatures, the conventional equilibrium 
state (a Fermi distributions of electrons in Landau 
levels) of an electron gas in a uniform magnetic field is 
unstable against the formation of transverse current 
waves traveling along the direction of the field; cor­
responding to this dynamic instability, we shall show 
that there is a Hartree ground state of an electron gas 
in a uniform magnetic field with lower energy than the 
conventional state, in which volume currents are pres­
ent perpendicular to the field and oscillating in ampli­
tude along the direction of the field. These facts would 
appear to cast doubt on theories of the equilibrium be­
havior of electrons in magnetic fields. However, we shall 
also argue that the energy difference between the un­
orthodox and conventional ground states is so minute 
as to render the instability of no practical significance. 
Our purpose is therefore not to report any new physical 
effects, but to explain the instability in the helicon dis­
persion relation, and to show that in spite of it the 
physical transverse excitations propagating along the 
magnetic field are stable. 

The instability occurs in the linear response of the 
conventional equilibrium state of the electrons in a 
static magnetic field to an electromagnetic disturbance 
which is calculated self-consistently, i.e., the sources of 
which are just the mean currents and charge densities it 
induces. The occurrence of the instability is rather sur-

* Supported in part by the U. S. Office of Naval Research. 
1 All results of this paper are found within a self-consistent field 

approximation, although we will generally not repeat this restric­
tion with each assertion. We shall also ignore electron spin, since 
to take it into account would only complicate the analysis without 
altering any conclusions. 

prising, since the corresponding classical problem is 
known to be stable. From rather general free-energy 
considerations, Newcomb2 showed that the combined 
system of Maxwell's equations and the Boltzmann-
Vlasov equation in a magnetic field, linearized about a 
Boltzmann distribution, has no solutions that grow in 
time. In Appendix A we show that Newcomb's argu­
ment can be generalized to the following cases: (a) clas­
sical electrons in a magnetic field with a Fermi equilib­
rium distribution, (b) quantum electrons in a magnetic 
field interacting only through self-consistently calcu­
lated Coulomb forces, and (c) quantum electrons inter­
acting through the full set of Maxwell's equations but 
in the absence of a static magnetic field. However, in 
the case of quantum electrons in a magnetic field with 
all electromagnetic interactions retained, the Newcomb 
argument produces not a proof of stability but a condi­
tion on temperature, density, and field strength suffi­
cient to ensure stability. For transverse modes prop­
agating along the field, this condition is necessary and 
sufficient, and the instability in the helicon dispersion 
relation is revealed by its failure. 

From the variety of circumstances under which one 
can prove stability theorems, one can infer quite a bit 
about the nature of the instability. I t must be a quan­
tum effect, it requires the presence of a magnetic field, 
and is due to electromagnetic interactions other than 
Coulomb. This suggests that one reexamine the Hartree 
variational principle for electrons in a magnetic field in­
teracting not only through Coulomb, but also through 
magnetic current-current interactions. A particular 
Hartree state is the familiar electrically neutral, volume 
current-free state, consisting of a Fermi distribution of 
electrons in Landau levels. We shall show that the in­
stability is due to the existence of other Hartree states 
containing transverse volume currents perpendicular to 

2 The theorem is proved in an appendix to I. B. Bernstein, 
Phys. Rev. 109, 10 (1958). 
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the magnetic field, with lower energy than the con­
ventional one. 

These states are quite similar to the nonuniform 
Hartree states found by Overhauser3 in the one-
dimensional Fermi system with attractive interactions. 
Kohn and Nettel4 argued that if the attractive interac­
tions are weak such a ground state exists only in one 
dimension. The instability in the helicon dispersion 
relation is an Overhauser effect of this kind. The static 
magnetic field, by quantizing motion in the perpendicu­
lar plane, provides the one dimensionality necessary if 
the effect is to occur for weak interactions, and the very 
weak magnetic interaction between parallel currents 
provides the attraction. 

In Sec. I I we derive a necessary and sufficient condi­
tion for the stability of transverse excitations propa­
gating along the field, which we use in Sec. I l l to show 
that instabilities always exist at low enough tempera­
tures. A rough calculation of the transition tempera­
ture reveals it to be extremely low, foreshadowing the 
conclusion of Sec. IV that the instability is due to the 
existence of Hartree states with lower—but negligibly 
lower—energy than the conventional ground state. 

Throughout we shall be working with a gas of N elec­
trons in a box of volume V, in the presence of a uniform 
background of positive charge of density no=N/V. 
The magnetic field B0 will be taken to be in the z direc­
tion, and described by the vector potential 

Ao=(0,£o*,0). (1.1) 

We shall take the quantization box to have dimensions 
L0 in the z direction, and L in the x and y directions. We 
record here the definitions 

a>p=(4:Tnoe2/tny/2, (1.2) 

o)c= \e\Bo/mc, (1.3) 

F(E) = l/(eP<*-»)+l), P=l/kBT, (1.4) 

and 
fn(p) = F(p*/2tn+(n+$)a>c). (1.5) 

II. NECESSARY AND SUFFICIENT 
STABILITY CONDITION 

An electron gas can sustain transverse normal modes 
propagating parallel to the applied magnetic field at 
frequencies and wavelengths satisfying5'6 

/ C 0 p
2 \ oo 

oo2=o)p
2+k2c2+l — )mo)c Jl(n+l)o)c 

\ no / «=o 

f dp fn(p-ik)-fn+l(p + U) , x 
X . (2.1) 

J (2T)2 o)~o)c~pk/m 

When coc<Ccoj„ at sufficiently long wavelengths (2.1) 
3 A. W. Overhauser, Phys. Rev. Letters 4, 415 (1960). 
4 W. Kohn and J. Nettel, Phys. Rev. Letters 5, 8 (1960). 
5 J. J. Quinn and S. Rodriguez, Phys. Rev. 128, 2487 (1962). 
6 V. Celli and N. D. Mermin (to be published). 

has a root at the helicon (or whistler) frequency, 
co = o)ck

2c2/o)p
2. For want of a more convenient designa­

tion we shall refer to (2.1) as the helicon dispersion rela­
tion, but we must stress that it only describes the helicon 
mode in certain limits, and that it describes other 
modes as well, such as the transverse plasmons at 
u = ±(a>p

2+k2c2y/2. 
A growing wave made up of circularly polarized 

transverse currents can occur if (2.1) has any roots in 
the upper half co plane. In this section we shall prove 
that at any nonzero temperature (2.1) has no roots in 
the upper half plane provided 

o)p
2+k2c2^ ( — jtncoc XX^+l)o>c 

\ Ho / n 

r dp Mp-hk)-fn+i(p+ik) 
X / ™ , (2.2) 

J (2w)2 coc-\-pk/m 

and otherwise exactly one such root. 
To avoid repetition of lengthy formulas in our proof, 

we define 

P(«) = (mucW/hr2no)lLn(n+1) 

XUn(p-ik)-fn+1(p+ik)l5(a>--coc-pk/m), (2.3) 

in terms of which the dispersion relation (2.1) is just 

g(w)-co p
2 +^V™co 2 +f^P(w)/ (co~w) = 0. (2.10 

The stability condition (2.2) is that7 g (0)^0 , so we 
must prove that g has no zeros in the upper half-plane 
if and only if it is non-negative at the origin. The only 
properties of P needed for the proof are 

(a) coP(co)>0, co^O; 
(b) J*dooP(a)) = o>p2a)c', 
(c) P(co) vanishes rapidly as co —» oo . 

Property (a) follows from (2.3) and the fact that the 
Fermi distribution is a decreasing function of energy. 
The strong inequality (which holds only at nonzero tem­
peratures) is essential. Property (b) follows from the 
fact that 

n0=?no)c Y.n \ dpfn(p)/(2T)2. (2.4) 

Property (c) refers to the fact that P vanishes as a 
Gaussian for large co, and will be appealed to in order to 
justify taking certain limits inside integrals. 

We now look for zeros of g in the upper half-plane. 
Leta) = rei9, 0 < r < o o , 0 < # < 7 r . The real and imaginary 
parts of g are 

Reg(reid)^a)p
2+kW-r2(2 cos20~~ 1) 

+-[da(P(<a)/D)(rcos6-a), (2.5) 

7 Since P(0) =0, g(0) is denned and independent of how zero is 
approached. 
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Img(reid) = —rsind 2r cos0+ f <foP(«)/D 1 . (2.6) 

where the denominator D is 

D(«,r,0)= \oo-u\2=r2+u2-2mcosd. (2.7) 

Im(g) will vanish in the upper half-plane whenever 

function of r, we find 

r fdo)(P/D*) = [l+ [(fcfaP/D2)] 

Xd(rcosd0(r))/dr. (2.12) 

Finally, from (2.7) and (2.8), we have 

2rcosd=-fd«P(«)/D. (2.8) jd^P/D>)+r> jd«(P/D>) 

Consider Eq. (2.8) for a given positive r. As cos# goes 
from —1 to 1, the left side increases from ~2r to 2r. 
The right side approaches + °° as cos# —» — 1, and — co 
as cos0-->l, due to property (a). Furthermore, its 
derivative with respect to cos0 

-~-2rjdwP(u)/D2, -I 
is negative. There is therefore exactly one solution, 
6o(r), between 0 and w, for each value of r>0. Clearly, 
do will be a continuous differentiable function of r. 
Furthermore, as r—>oo, from (b) and (c), 

2r cosdo^o)p2o)c/r
2. (2.9) 

Thus, g(o>) is real along a curve in the upper half-plane 
which starts at the origin and asymptotically ap­
proaches the imaginary axis as r—*co, and is real no­
where else in the upper half-plane. Along this curve 
(2.8) holds, so 

Reg(rei6^) = c^p
2+k2c2-~r2(4:cos2do(r)-l) 

- [dM>P(a>)/D. (2.10) 
• / • 

From (2.10) and (2.9), 

lim Reg(rei9o(-r))=co . 

Since Re(g) is continuous along the curve it will there­
fore vanish at least once on the curve if it is negative as 
r —> 0. Thus ,when g(0) < 0 , g(oo) has at least one zero in 
the upper half-plane. To establish the rest of the 
theorem—that it has only one zero, and that when 
g(0)>0 there are no zeros in the upper half-plane—it 
suffices to show that g(reie°w) is an increasing function 
of r. 

From (2.10) and (2.7), 

i(d/dr) Reg(rei6o(r))^r—4:r cosd0d(r cosd0)/dr 

+ (du(&P/D2)[r-ud{r cosB*)/dr]. (2.11) 

Differentiating (2.8), which implicitly gives d0 as a 

= — 2r cos0i •ofl— fd^P/D2)] . (2.13) 

If we use (2.12) and (2.13) to eliminate in (2.11) the 
occurrence of fdw(io2P/D2) in favor of J*do)(6oP/D2), 
we find that 

\(d/dr) Reg(rei0^r)) = r sm2dJ[l+(rddo/dr)2] 

1+ / du{uP/D2) I, (2.14) X 

which is positive by virtue of property (a). 
This completes the proof that (2.2) is a necessary and 

sufficient condition for stability of the helicon disper­
sion relation at nonzero temperatures. 

III. FAILURE OF STABILITY CONDITION 

Although the stability condition (2.2) has been de­
rived only for nonzero temperatures, if it fails at zero 
temperature, we can be sure of finding instabilities at 
very low temperatures as long as the left side of (2.2) 
is continuous at T = 0 . When the temperature is zero, 
(2.2) becomes 

cop
2+*V£ L (2/k) In 

pn + pn+l+k 

pn + pn+l — k 
(3.1) 

where pn is the Fermi momentum for the ^th Landau 
level, 

pn= \2m{\x— (^+§)coc)] 1/2 (3.2) 

and nmax is the quantum number of the highest occupied 
level, 

( ^ m a x + i ) W c < M < ( ^ m a x + f ) w c . ( 3 . 3 ) 

Evidently (3.1) fails for k sufficiently close to pn+pn+i 
for any n<nmax, whatever the magnetic field strength or 
density. 

I t is easy to verify that things are continuous at T=0. 
We consider for algebraic simplicity the case k = pn 

+pn+i, n<nmskX, which leads to the worst violation of 
(3.1), and show that for such k at any nonzero magnetic 
field strength and density there are instabilities at 
sufficiently low temperatures. Since each term in the 
n summation in (2.2) is positive, when k = pn+pn+i we 
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keep only the nth term to get a condition necessary for 
stability8: 

tn2coc
2uP

2(n+l) 
0>p

2+(Pn+pn+l)2C2>-

rrdpMp) r dpfn+1(p)-\ 
X\P +P . (3, 

L J Pn—fi J Pn+1—P J 
4) 

Integrating by parts we find, in the limit as 
ppn

2/2m-*co, 

dx In I x I 
P J ^ ^ _ i _ = i n ( ^ l , v w t ) _ / . . (3.5) r dpu(p) r 
>/ — = In ( & „ » / « ) - / 
J i>n—i> J 

2 cosh2# 

The remaining integral is of order 1. Clearly then, for 
sufficiently low temperatures there will be instabilities 
when k = pn

Jrpn+i> I t will be easiest to reverse the in­
equality in (3.4) when pn+pn+i is as small as possible, 
i.e., when the (n-\-l)th Landau level is barely occupied, 
so that pn

2/2m=coc, pn+1—Q. Under these conditions 
wcoc~/z, the energy of the last occupied state, which is 
roughly independent of B0 at fixed density. The in­
equality in (3.4) will be reversed when 

wy/2(^p
2+2mc2^c)/e

2fx(m^c)
1/2^lii(^c). (3.6) 

Because of the energy mc2
y the left side of (3.6) is quite 

large. I t is least for given density when o)c=o)p
2/2mc2; 

for this value of B0 (roughly a few kilogauss at metallic 
densities and decreasing linearly with decreasing den­
sity), (3.6) becomes 

In08wc)«4ir(137)«p/M. (3.7) 

Since COP/M is somewhat larger than unity at metallic 
densities and varies only as n0~

1/6, the transition tem­
perature given by (3.7) is far too low to be of any physi­
cal significance. 

With the aid of (2.4) one can estimate the size of the 
terms omitted from the right side of (3.4) and argue 
that these cannot alter the right side of (3.7) by the 
several orders of magnitude necessary to lead to an 
observable transition temperature. Rather than go into 
this further, we shall now show the cause of the in­
stability and explain directly why it occurs only at un-
observably low temperatures. 

IV. HARTREE GROUND STATE 

The helicon dispersion relation is derived by cal­
culating the linear response of an electron gas initially 
in thermal equilibrium to a time-dependent electro­
magnetic disturbance. The thermal equilibrium state is 
taken to be a Fermi distribution of electrons in eigen-
states of the one-electron Hamiltonian 

3 C 0 = | ^ o 2 , 
8 In (2.2) the numerator of the integrand vanishes whenever 

the denominator does. The singular integrals in (3.4) were intro­
duced by separately treating the two terms in the numerator 
of (2.2), and can be interpreted as principal value integrals. 

where 
v0=(p—eA0/c)/m. 

The eigenstates are the Landau functions,9 

^nM^iLLo^V^^^nix+py/fmac), (4.1) 

where the <j)n are the orthonormal wave functions for a 
one-dimensional harmonic oscillator of mass m and fre­
quency coc. The corresponding eigenvalues are 

Envz
:=zpz2/2m+ (n+J)OJC (4.2) 

with degeneracy mo)cL
2/2w. 

The basic significance of the helicon instability is that 
in a self-consistent field approximation a simple Fermi 
distribution of electrons in Landau states does not give 
the lowest free energy.10 To avoid irrelevant complica­
tions, we shall consider only the situation at zero tem­
perature, and shall show that the conventional Hartree 
ground state does not minimize the expectation value of 
the energy in a self-consistent field approximation. In 
fact, there are a variety of states, all of which give a 
lower Hartree energy than the conventional 

2w «=o pz=~-vn\2tn J 

Since, however, all suffer from the limitation that the 
energy reduction is unobservably small, it seems a 
waste of effort to discuss them systematically. We shall 
therefore examine only a typical class of such states. 
The kinds of refinements one can use to produce 
states of still lower energy should then be clear; it is 
our (unproved) belief that no more clever choice will 
increase the energy reduction by the factor of about 10300 

necessary to make it observable. 
The conventional Hartree ground state ^ 0 is a prod­

uct of one-electron Landau states, containing \pnPyPz if 
EnPz ^/z, or, equivalently, if —pn^pz^pn. Now con­
sider any two adjacent Landau cylinders. (By a cylinder 
we mean the set of all states with a given n.) We con­
struct a trial state \I> by letting all cylinders except these 
two contribute to ^ in the conventional way. For these 
two cylinders, however, we occupy the states 

<t>nqPy —aqrn,Pn+q,Py-T-Vqyn-}-l,-Pn+1+q,Py, 

— pn^q<pn+l, 
Ynqjty ~aqYn,-Pn—q,Py~T~UqYn+l,Pn+i--q,Py, 

-Pn<q^pn+l, (4.3) 

k,l*+IU*=i. 
The states <j> are an orthonormal set and are orthogonal 

9 L . D. Landau and E. M. Lifschitz, Quantum Mechanics 
(Pergamon Press, Inc., New York, 1958), p. 474. 

10 The conventional state is a solution to the Hartree equations 
with uniform density, zero volume currents, and hence vanishing 
self-consistent fields. It does, of course, have surface currents, but 
the effect of these is already included if we regard B0 as the true 
internal field, generated by external sources and by the surface 
currents. 
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to all other occupied Landau levels, so the many-particle 
wave function ty is an acceptable Hartree wave func­
tion. The range of values of q in (4.3) is such as to pro­
duce the same number of one-electron states as in the 
conventional wave function. Indeed, if we make the 
choice 

aq=0 (&fl=l), q>0, 
(4.4) 

aq=l (&«=0), q<0, 

then ^ reduces to the conventional state, S£0. We shall 
show that this choice of the a's does not lead to the 
lowest energy. 

It is simplest to discuss the Hartree approximation in 
terms of the one-particle density matrix, cp. If the trial 
Hartree wave function is 

^(ri,-v,rjv) = IIa«a(r«), 

then ip is defined to be 

<rk|r'> = E«*«W*«*(r'). (4-5) 
The energy in a Hartree state is the electron kinetic 
energy plus the energy of the self-consistent fields: 

• / • 

£ = t r | w » V + Ur(£1
2+i?i ! !)/8x, (4.6) 

(4.7) 

(4.8) 

(4.9) 

where v is the velocity operator, 

v=(p—e(A0+Ai)A)/m=Vo—eAx/mc, 

and Ei and Bi satisfy 

V • Ex=4TT(P—p0) = 4?re«r | <p | r)•—n0), 

V xB1-47rj/c=(47re/c)<r|Hv,^}|r). 

(The curly bracket is an anticommutator.) 
We first solve (4.8) and (4.9) to eliminate the self-

consistent fields from (4.6), leaving an energy that ex­
plicitly depends only on <p. One easily verifies that in the 

state ^ the density remains uniform and equal to 
n0=N/V, so that Ei=0. To calculate Bi it is useful to 
have an expression for the currents present in the state 
^ in the absence of a self-consistent vector potential: 

jo(r) = e<r|i{^,v0}|r). (4.10) 

The set of single-particle states (4.3) continues to give 
a vanishing component of jo parallel to B0, since it is 
invariant under a reflection in the x—y plane. There is 
now, however, a nonvanishing volume current per­
pendicular to B0, given by 

70*00 = 2 "1/2 / dre^iktt 

• dze~ik'T(r\{va 

LJoz(r)±ijoy(r)'] 

= §0tr{vo
:t, *>}*"*" 

This can also be written as 

jo±(k) = e tr<perikmtvQ
±—k±pQs)/m 

±ivv, <p}\r) (4.11) 

(4.12) 

since p(k) = 0 unless k=0. It is enough to calculate 
jo+(k), since 

io~(kWo+(-k)*. (4.13) 

For this purpose, we use the following property of the 
Landau functions: 

^0+^n,P2tPy= [ ( W + I j c o c / W ] 1 ^ ^ ^ . ! , Pz>Py' (4.14) 

(The particular value of the phase factor will turn out 
to be of no consequence.) Since only the nth and 
(n+l)th levels contribute to j 0 , we have 

Py,Q,^ 

= e[(w+l)wc/w]1/V" L b*a. 
QPy 

= e[(#+l)a);/m]1'2e^(mcocF/2^„)i:,(*9*«9)5(fe)0)5(^!,,0)[5(^,^„+/»n+I)+S(-A^„+^re+1)]. 

/ dripn,pn+q,vy
 e ' 'I4/n,-pn+i+g,ptl-\-(pn,pn+l,(l)-^ (~pn, — pn+l, — Q) (4.15) 

We absorb the phase factor e'v into aq. (Evidently, its But 
value determines the direction of j 0 in the x—y plane.) 

We can write E in terms of j 0 , since 

trpQmv2) = tr^3C0- (e/ic) tr<p{(v+\0),A j} 

= tr<p3C0~(2c)-1 [dr(j+j0)-Ai, 

(<fr£1
2/8x= [• <fr£1
2/8x= dt(Ai'j)/2e, (4.17) 

so 

1 / * ( i " 

(4.16) r-J. E^tripWQ- / dr(Ai*jo)/2c. (4.18) 
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Furthermore, in the gauge y • Ai=0, 

— V2Ai=4TTJO/C— (kwe/c){x \ e<pAx/mc | r) 

Eq. (4.25) can be written 

= 47rjoA+47rn0e
2Ai/wc2

3 (4.19) 

since <p gives a uniform density. Thus, 

E=tr<pWQ-(2Tr/V) 

XEk(^2^+cop
2)-1j0(k) • jo( -k) , (4.20) 

or, from (4.15) 

(2V/7rLo2)(n+l)mcoch
2 

XI; [
rPn+l 

/

Pn+1 j 2-j 

a*bM \. (4.27) 
-Vn I -J 

E=tr<p3Q,Q 
(pn+pn+l)2cH-Up2 

Y,qbq*aq\K (4.21) 

We wish to compare (4.21) with the conventional ground 
state energy, tr<p°5C0. The contribution to tr(<p— <p°)3Co 
comes only from the nth. and (^+l)th levels. The con­
ventional state gives 

iucL
2r « fpz

2 \ 
E (—+(»+*KJ 

27T Lpz=^Pn\2m / 

Pn+1 /p/ \ - l 
+ E ( — + ( » + § ) « . ) , (4.22) 

Pz^-Pn+l\2m / J 

while the corresponding contribution from <p is 

mojcL
2 Pn+ f /(pn+q)2 

MCL2 pn+ r / ( 

— E Kl2(-
7T 9 = - f n L \ 

< 

2m 

(Pn+i-q)2 

2m 

(W + |)«C J 

(»+tK^l. (4.23) 

Subtracting (4.22) from (4.23) gives 

(L2/T)(pn+pn+1)a>lZ q\aq\
2~Z g | ^ | 2 ] . (4.24) 

Evidently if we wish to minimize (4.27), we can take 
aq and bg to be real. It is then a straightforward varia­
tional calculation to make (4.27) stationary subject to 
the constraint aq

2+bq
2=l. One finds that (E—E0)/V 

is stationary when 

V=*[ l -? / ( ? 2 +go 2 ) 1 / 2 ] , (4.28) 
where 

qo2= \j>n+l2+pn2+2pnpn+1 COSh(l/g)]/ 

sinh2(l/g). (4.29) 
This choice of aq leads to 

(E-E0)/V= - Mpn+pn+l)/4ir2) 

Xlh(pn+l2+Pn2)(cOth(l/g)-~l) 

+pn+ipn/smh(l/g) ] , (4.30) 

which is in fact negative for any value of g. 
The effective coupling constant g is largest when the 

(w+l ) th level is just starting to be occupied, i.e., when 
w=wm a x and pn

2/2m=cx)c. Under these conditions, (4.26) 
becomes 

g=(27r)-1(137)-1(^+l)^c 
X (2mc2a>cy

/2/(2mc2a>c+a>p
2). (4.31) 

As in the preceding section, (nm&^+l)coc^fx, inde­
pendent of coc, so g is largest when Goc~o)P

2/2mc2, where 
it has the value 

g=(4r)-H137)-1(M/co3)). (4.32) 

Equations (4.24) and (4.21) give as the energy difference 
per unit volume between the states \I> and ^o, 

(E-E0)/V= Mpn+pn+l)/2^) 

c , 2w Pn+l 0 

x|—(E <?KI2-£<?KI2) 
.L0 ° ~~Pn 

Pn+i 12"~| 
£ a*bq\ , (4.25) 

—Pn I J 

Placing this in (4.30) we see that (E—E0)/V, though 
negative, is absurdly small in magnitude. Comparing 
(4.32) and (4.30) with (3.7), we see that the instability 
in the helicon dispersion relation appears only at tem­
peratures so low that thermal energies do not obscure 
the difference between E and E0. 

We conclude that the helicon instability is due to the 
existence of a Hartree wave function giving lower 
ground-state energy than the conventional one, but by 
an immeasurably small amount.11 There are, it is true, 
better choices than (4.3) which give still lower energies. 
One could, for example, extend the coupling (4.3) to 

where g is the dimensionless quantity 

g= (n+l)me2a)c
2/Tr(pn+pn+i) 

X(a>p
2+(pn+pn+i)2c2). (4.26) 

In the limit of infinite volume {(2TT/LQ)Y,q~^ fdq) 

11 Indeed, the quantity qo [Eq. (4.29)] is so small that in 
replacing sums over q by integrals, the infinite volume limit is not 
achieved even when the electron gas fills the universe. By repeat­
ing the calculation with the sums (4.25) and not the integrals 
(4.27), one can show that (E—E0)/V is proportional to g/Lo2. For 
any physical system, the limit of infinite volume is never reached, 
and the energy reduction goes as the inverse square of the thickness 
of the sample along the magnetic field. 
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every pair of levels. This would result in an energy re­
duction containing a sum of terms like (4.30), but each 
term would even be negligible compared to the already 
negligible contribution from the two highest levels. One 
can also experiment with various more complicated 
forms of coupling than (4.3) but in all cases we have 
examined we always find an energy reduction propor­
tional to exp[—47r(137)^4], where A is of order unity 
or greater at any reasonable density. 

The instability therefore appears to be a theoretical 
curiosity rather than an observable effect. The peculiar 
nonuniform ground state that it reflects is quite similar 
to the Hartree ground state with spatially varying 
density found by Overhauser for one-dimensional fer-
mions with arbitrarily weak attractive interactions. 
The presence of a static magnetic field is necessary to 
give a one-dimensional nature to the density of states.12 

Our state has a spatially varying current instead of 
Overhauser's density wave, because it is the current-
current interaction that provides the attraction. (This 
also explains why our coupling of states is between 
cylinders with An=dzl, rather than a more straight­
forward coupling within each cylinder: The latter cou­
pling cannot lead to a state with volume currents.) 
For weak coupling, the Overhauser kind of state reduces 
the energy per particle by an amount proportional 
to exp(—1/g); because the magnetic current-current 
interaction is so small at nonrelativistic velocities, the 
energy of our state differs negligibly from that of the 
ordinary state. 

The instability in the helicon dispersion relation 
can thus be briefly characterized as follows: The 
quantization of orbits by the magnetic field gives a one-
dimensional nature to the density of states, and this, 
along with the attractive electron current-current in­
teraction, leads to an Overhauser type of instability; 
however, because the only attractive interaction is a 
very weak magnetic one, the Overhauser state has 
negligibly lower energy than the ordinary state; con­
sequently, the instability is only present at unattain-
ably low temperatures. 

ACKNOWLEDGMENT 

We have had several helpful discussions with Dr. L. J. 
Sham. 

APPENDIX 

There is a classical stability theorem due to Newcomb2 

which follows from so general an argument that its fail­
ure in the quantum case is rather surprising. In this 
Appendix, we extend Newcomb's argument to cases 
(a)-(c) of the Introduction, and show why the argu­
ment breaks down for a quantum electron gas in a uni-

12 This effect of the static magnetic field might enhance the 
Overhauser spin-wave instability [A. W. Overhauser, Phys. Rev. 
Letters 4, 466 (I960)] to the point where it could give observable 
effects in three dimensions even for a relatively weak exchange 
coupling. This question is now being investigated. 

form magnetic field interacting through the full set of 
Maxwell's equations. 

We begin by reviewing Newcomb's proof in a form 
slightly generalized to cover case (a), in which the elec­
tronic distribution function has the form 

/(r,v,0 = / o W + / i ( r , v , 0 , 

The time development of / is given by the Boltzmann-
Vlasov equation 

( a / a / + w ) / ( r , v , / ) = - (e/m) 

X [EH- (Y/C) x (Bo+BO] • Vv /(r , v ,0 , (A2) 

where B0 is the uniform static magnetic field, and Ei 
and Bi are self-consistent fields given by the solution to 
Maxwell's equations with sources 

ji(r,0 = e(m/2iry A*vv/i(r,v,0 , 

(A3) 

P l(r ,0 = e(m/27r)* /"dv/i(r,v,0. 

When the disturbance from equilibrium is small we 
replace (A2) by the linearized equation 

(d /dH-v .v) / i ( r ,v ,0 
= -(e/m)[Vv V v / o W - v xB 0 - V v / i ( r ,v ,0 ] . (A4) 

Newcomb's theorem is that there is no solution to (A4), 
(A3), and Maxwell's equations, in which /i(r,v,/) has an 
unbounded growth in time for any r and v. This is 
proved by observing that the function 

AF= [driEf+Bfl/bc 

+ikBT(m/2Ty didvlft/Ml-foft (A5) 

is a constant of the motion as a result of (A4), (A3), and 
Maxwell's equations.13 But if fi(t,vyt) were to grow in 
time without bound, then so would the second term in 
AF, since / i 2 / /o( l —/o) is everywhere positive. Since 
the first term in AF is also positive, AF would have to 
grow in time, which contradicts dAF/dt—Q. 

The trick of producing this kind of proof lies in finding 
a function like AF having a negative or vanishing time 
derivative, and consisting of an appropriate sum of posi­
tive terms. Such a function, in nonlinear stability theory, 
is called a Lyapunov function.14 Newcomb's Lyapunov 

13 We consider (without loss of generality since the equations 
are linear) fi to have a periodic space dependence with wave 
vector k, and take all space integrals over an integral number of 
periods; this enables us to discard the terms /*B0-Bi and 
y*(EiXBi), which can be transformed into vanishing surface 
integrals. 

14 Applications of Lyapunov's method to plasmas are discussed 
by T. K. Fowler, J. Math. Phys. 4, 559 (1963). 
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function can be derived from the free energy in the 
grand canonical ensemble 

F= / ,^r[£i2+(Bo+B1)2]/87r+(w/27r)3 f drdy 

X [ ( i ^ - M ) / - f e T ( / l n / + ( l - / ) l n ( l - . / ) ] . (A6) 

To second order in fh F^FQ+AF. There is no a priori 
reason why such an expansion of the free energy should 
produce a Lyapunov function; indeed Newcomb's proof 
breaks down quantum mechanically just because the 
second-order free energy is no longer such a function. 

To construct a quantum version of Newcomb's argu­
ment, we start from the equation of motion for the one-
particle density matrix 

id<p/dt=[3C,<p~], (A7) 
where 

3C(0 = Jw(v0—eAi(t)/mc)'2. 

Ai is the self-consistent vector potential (in the gauge 
in which the scalar potential vanishes) satisfying 
Maxwell's equations with sources 

j(r,0 = i«<r| MO,vo-(*/w*)Ai(0} |r>, 

p(T,t) = e((r\<p(t)\t)-n0). 
(A8) 

(We use the same notation as in Sec. IV.) If <p= <p°+ (p1, 
and we linearize about the equilibrium 

then cp1 obeys 

where 

(A9) 

(A10) 3 e i = - ( e / 2 c ) { v 0 ^ i } 

and Ai satisfies Maxwell's equations with sources 

j(r,0 = i«<r| {<pKt),y<>} I r)-(e*/mc)(t\ VoXi(t) | r) , 

p(r,0 = «<r | ^ (0 | r> . (Al l ) 

The free energy is 

F= /<fr[JE12+(Bo+B1)2]/87T+tr(^(3C-M) 

+ y f e B r t r C ^ l n ^ + ( l - v ) l n ( l - ^ ) ] . (A12) 

To second order this can be written F=Fa+AF, with 

AF= (dx(ES+BS)/%T+l Z*fi\(<x\ ^ | |8 ) l 2 

X(e0-fa)/(<Pao-<Peo)+tr(<pOeUr>/2mc2) 

- t r (^e{v 0 > Ai}/2c) , (A13) 

where the |a) and |/3) are complete sets of eigenstates 
of 3Co, ea is the eigenvalue of 3C0 in the state | a), and 
«pa°= 1 / ( ^ ( « « - M ) + I ) . I t follows from (A13), (Al l ) , (A9), 
and Maxwell's equations that dAF/dt—0. What now 
cannot be established in general is that AF has the posi-
tiveness properties of a Lyapunov function. By com­

pleting the square for the terms involving <px, one can 
write 

AF= [dt(El^/8ir)+R(A1)+^ £ J < « | ^\P) 

-(e/2c)-
ep—ea 

-<a|{VoA>|/3> 
9«°-<pf 

(A14) 

where 

R(A) = \dx 
/ • 

( V x A ) 2 we2 A* 
- tr-

87r 2mc2 

e2 <pa°— <ppr 

— E-
2C2 afl € / 3 ~ € a 

|<«|§{v0,A}|£>|2. (A15) 

We have separated from AF the quantity R(Ai), which 
is a quadratic functional of Ai independent of cp1. If 
R(A) were positive semidefinite, then the quantum ver­
sion of Newcomb's theorem would be established, for, 
since (ep— €a)/(<Pa°— <pp°)>0, if any matrix element of 
<pl grew without bound, no compensating growth of Ai 
could occur that would not result in AF also growing. 

Thus, Newcomb's argument in the quantum case 
leads not to a proof of stability, but to a sufficient con­
dition for stability. One can show that in the classical 
limit R(A) — J^drB^/Sw, which is positive definite. We 
can also show that R(A) is positive semidefinite in 
cases (b) and (c). For this purpose, we first verify that 
R(A) is gauge invariant. This would follow if we could 
show that 

0 = tr (<p°e2A • vA/2mc2) - (e2/2c2) 

XEafl<a|i{vo,VA}|i8><i8|J{Vo,A}|a> 

X ( ^ ° - ^ ° ) / ( e ^ - 6 a ) , (A16) 

for arbitrary functions A(r) and A(r). Now |{^o,VA} 
= (1/^)[A,3€0], so the second term in (A16) is just 

^ 2 A 2 ) E ^ ( ^ 0 - ^ 0 ) < a | A | ^ ) ( / 3 | J { v , A } | a ) 

= i(e2/±c2) t r ^ [A ,{v 0 , ^} ] = *(e2/4<;2) tr^{[v0 ,A],A} 

= (e2/2mc2) tr^°A-VA, (A17) 

which cancels the first. 
In particular, R(A) vanishes for a purely longitudinal 

A, and this establishes stability in the limit where only 
Coulomb interactions are retained.15 I t also follows from 
gauge invariance that the general sufficient condition for 
stability can be reduced to R(A) being non-negative for 
all transverse vector fields A. This condition is met when 
B 0 =0 , for then the eigenstates of 3C0 are just plane 
waves, and the last two terms of R(A) are, for any trans-

16 This result has been proved directly from the dispersion 
relation by N. D. Mermin and E. Canel, Ann. Phys..(N. Y.) 26, 
247 (1964). 
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verse A, proportional to the following expression, where pi is the component of p perpendicular to k: 

(eV2mc2)Zk|A(k)|* /'(</p/(2T)«)[F(^/2»)-(#1V2p-k)[F((p-ik)V2»)-i7((p+ik)V2«»)]]. (A18) 

Now 

f^p(V/2p-k)[F((p-^k)2 /2«)-F((p+ik)V2m)]= - \ j'dp(p,*/2m) f daF'{{p*+avk+&/i)/2m) 

dp(p1
i/2m)dF((pi+(l-a,i)ki/i)/2m)/d(pl

2/2m) 

= ifdpf daF((p>+k*(l-a2)/4)/2#0< ( dpF(p2/2m), (A19) 

• * / _ / a / f l 

so (A18) is positive. 
We have therefore established stability in cases (a), (b), and (c). However, in the presence of a magnetic field, 

R(A) is not positive semidefmite. In particular, if A(r) is transverse and varies only along the direction of B0, 

A(r) = E*A(ft)e«*', 
then 

R(A) = (V/Sw)i:k(k
2+o>P*/cZ) | A(k) | 

~(e2/2c*)Z Jdt^a* (T)(A+(k)v-+A-{k)v+)<si!"tf,{t) (vJ-V/PMefi-ea). (A20) 

With (4.14) and (4.1), the matrix elements in (A20) are easily evaluated; we find (with a suitable choice for the 
phases of A(±)), 

fc|A(£)|2|~£V+av *(A) = (F/4TTC2)Z*I A(i) 12| **<*+«,»- (mueW/**ano)T.(»+1) 
n 

X fdpZfn(p-ik)-fn+1(p+U)y^c+pk/m)l. (A21) 

But the quantity in brackets [see (2.2)] has been shown in Sec. I l l to be negative at low temperatures for certain 
values of k. Thus, Newcomb's argument does not produce a stability theorem in the general case, and is not in­
consistent with the instability in the quantum helicon dispersion relation. 


